Search
Close this search box.

94. A SIMPLE METHOD FOR THE DESIGN OF OPTIMAL DAMPER CONFIGURATIONS IN MDOF STRUCTURES

Existing methods for the design of optimal configurations of supplemental dampers are usually not simple enough to be used routinely, and typically lead to different damper sizes at virtually every story. This can be avoided with the Sequential Search Algorithm, which lets the designer control the number of different damper sizes. In this paper, a simplification to the Sequential Search Algorithm is developed. This Simplified Sequential Search Algorithm makes it easy for engineers to deal with damper added structures. It was found that the efficiency of damper configurations given by the proposed Simplified Sequential Search Algorithm is comparable to the efficiency of damper configurations given by more sophisticated procedures. The applicability of the method is limited to those cases where the response of the structure with added dampers remains linear.

93. EXPERIMENTAL STUDY OF RC BUILDING STRUCTURES WITH SUPPLEMENTAL VISCOUS DAMPERS AND LIGHTLY REINFORCED WALLS

This paper describes an experimental evaluation of viscous dampers used to reduce seismic motion in reinforced concrete moment-resisting building structures. Common practice in Taiwan is to use lightly reinforced concrete exterior walls and interior partition walls, which not considered for their contribution of stiffness and strength in the design process. As these additional walls greatly reduce relative story displacement and velocity, it has been suspected that the effectiveness of supplemental dampers would be very limited. However, the test results show that a new displacement multiplying mechanism, the toggle brace damper system, is effective even with a small relative story drift in the seismic response control of the structure. Dampers produce significant force and displacement reduction in the moment-frame structures that were investigated.

92. ENERGY DISSIPATION SYSTEMS FOR SEISMIC APPLICATIONS

This paper presents a summary of current practice and recent developments in the application of passive energy dissipation systems for seismic protection of structures. The emphasis is on the application of passive energy dissipation systems within the framing of building structures. Major topics that are presented include basic principles of energy dissipation systems, descriptions of the mechanical behavior and mathematical modeling of selected passive energy dissipation devices, advantages and disadvantages of these devices,
development of guidelines and design philosophy for analysis and design of structures employing energy dissipation devices, and design considerations that are unique to structures with energy dissipation devices. A selection of recent applications of passive energy dissipation systems is also presented.

91. COUPLED TRUSS WALLS WITH DAMPED LINK ELEMENTS

A new structural concept is proposed for the seismic design of tall buildings. This system combines the inherent stiffness and strength of a conventional truss system with the energy absorption characteristic of supplemental damping elements. The damping elements are strategically placed to form the linking elements of a coupled vertical truss system. While the force resistance system of the truss wall is in parallel, the damped link beam is in series with the component of the truss stiffness contributed to the coupled wall action. A series of time history dynamic studies gauged the performance of the proposed concept and found the proposed damped link concept superior in performance compared to the conventional approach.

90. REHABILITATION OF A 1985 STEEL MOMENT FRAME BUILDING

A 1985 steel moment frame was seismically upgraded using passive energy dissipation, without adding stiffness to the system. The design and analysis techniques for sizing the Velocity Braces and their impact on the demand capacity ratios are reviewed in this paper. The original structure was built in the San Francisco Bay Area in compliance with the 1985 Uniform Building Code (UBC). The moment frame contains the classic pre-Northridge nonductile moment connection. Nonlinear time history analysis was used to design a damper system that provides a significant decrease in seismic response.

89. U.S CODE DEVELOPMENT OF STRUCTURES WITH DAMPING SYSTEMS

Damping devices are being increasingly used in both new and existing buildings in both United States and Japan. This increased popularity has created a demand for design guidance and building codes. This paper provides a summary of the code development activities for the 2003 NEHRP by the Building Seismic Safety Council.

88. SEISMIC PERFORMANCE OF LIGHT FRAMED WOOD STRUCTURES WITH TOGGLE-BRACED FLUID DAMPERS

In recent years, seismic damping systems have been employed in numerous steel and concrete framed buildings. Such systems dissipate a significant portion of the seismic input energy, thereby relieving the energy dissipation demand on the structural framing system and thus reducing damage. As part of a NEESR project to develop a performance based approach to seismic design of multi-story light framed wood structures, the application of damping systems to such structures has been evaluated via seismic shaking table tests and numerical simulations. This paper focuses on the results from shaking table tests of shear walls employing toggle braced fluid dampers. The results demonstrate that toggle braced fluid dampers provide a significant increase in the seismic resistance of the walls, allowing them to achieve high levels of performance when subjected to strong ground motions.

87. FLUID DAMPERS FOR SEISMIC PROTECTION OF WOODFRAME STRUCTURES

In the recent past a large number of steel framed buildings have used supplemental energy dissipation systems to provide seismic protection. However, the application of such systems to wood frame structures has been essentially non-existent except for a limited number of experimental laboratory studies. This paper presents a numerical study of the application of fluid dampers for seismic protection of wood framed structures. Such dampers dissipate energy via orificing of a fluid. The seismic response of a wood framed shear wall with and without dampers is evaluated via nonlinear finite element analyses. The results of the analyses demonstrate that the dampers are capable of dissipating a large portion of the seismic input energy while simultaneously relieving the inelastic energy dissipation demand on the shear wall.

86. BASE ISOLATION AND SUPPLEMENTAL DAMPING SYSTEMS FOR SEISMIC PROTECTION OF WOOD STRUCTURES

This paper provides a literature review on the application of base isolation and supplemental damping systems for seismic protection of wood structures. The review reveals that both elastomeric bearings and sliding bearings have been considered for implementation within base isolation systems of wood framed buildings. In addition, friction dampers, viscoelastic dampers, hysteretic dampers, and fluid viscous dampers have been considered for implementation within the framing of wood buildings. Although there are a number of impediments to the widespread implementation of such advanced seismic protection systems, the reviewed literature clearly demonstrates that advanced seismic protection systems offer promise for enabling light framed wood structures to resist major earthquakes with minimal damage.

85. SHOCK DESIGN FOR MK-49 ISOLATION

The Sperry Marine MK 49 Ship’s Inertial Navigation System (SINS) is now in production for marine surface and subsurface applications. This system has been selected as the standard NATO SINS equipment and is the only marine inertial navigator which utilizes ring laser gyros. In order to serve the NATO community, the system must withstand a variety of shock stimuli (STANAG 4141, STANAG 4142, BR3021, etc.). Sperry Marine has shock hardened the system enclosures and developed a shock isolation system for the Inertial Measurement Unit (IMU) using tension compression liquid spring/dampers in a hexapod configuration. This isolator assembly provides the shock attenuation and precision angular alignment return ability that is needed to meet the above specifications. This paper addresses the design process to shock harden the IMU and presents experimental results.

Investor Information

2022 Q1 Important Links

 

Investor Information

2021 Q4 Important Links

Investor Information

2021 Q3 Important Links

Investor Information

2021 Q2 Important Links

Investor Information

2021 Q1 Important Links

Investor Information

2020 Q4 Important Links

Investor Information

2020 Q3 Important Links

Thank You!

A Taylor Devices Representative will be in touch shortly.

Investor Information

2020 Q1 Important Links

Investor Information

2019 Q4 Important Links