Search
Close this search box.
RESOURCES

Fluid Viscous Dampers

Case Study

98. SEISMIC PROTECTION SYSTEM AND ITS ECONOMIC ANALYSIS ON THE BEIJING HIGH-RISE BUILDING PANGU PLAZA

Pangu Plaza, located at Beijing close to 2008 Olympic main stadium, is a 191 meter, 39-story steel high rise building. It was analyzed under earthquake and wind loads with both Fluid Viscous Dampers (FVD) and Buckling Restrained Braces (BRB or UBB) as the seismic protection system. The complete seismic response on the horizontal and vertical directions showed that the Fluid Viscous Dampers are highly effective to reduce the structural response, as well as the secondary system response. A comparative analysis of structural seismic performance and economic effect was considered, by the traditional method of increasing steel columns and beams size; by using BRB’s and by using FVD’s to absorb the seismic energy. Structural response analysis showed that using FVD’s to absorb the seismic energy made the structure satisfy the Chinese seismic design code for the “rare” earthquake and also greatly improved the seismic performance. Economic analysis showed that FVD’s were the most economic approach for both one-time direct investment and long term maintenance.

White Paper

97. SCISSOR-JACK-DAMPER ENERGY DISSIPATION SYSTEM

Installation of damping devices has been limited to diagonal or chevron brace configurations until the recent development of the toggle brace. This configuration magnifies the effect of damping devices, thus facilitating their use in stiff framing systems. This paper introduces the scissor jack damper system that was developed as a variant of the toggle-brace damper system, with the added advantage of compactness. The effectiveness of the scissor jack configuration is demonstrated through testing of a large scale steel framed model structure on an earthquake simulator. Experiments showed that despite the small size of the damping device considered, the scissor jack system provided a significant amount of damping and substantially reduced the seismic response of the tested structure. Response history and simplified analyses produce results that are consistent with the experimental results.

Uncategorized

95. OPTIMIZED DAMPING DEVICE CONFIGURATION DESIGN OF A STEEL FRAME STRUCTURE BASED ON BUILDING PERFORMANCE INDICES

Energy dissipation devices (EDDs) have been accepted as one of the viable strategies for enhancing the seismic performance of building structures. However, current design provisions do not provide guidelines for optimizing the EDD configurations. For many building structures an efficient configuration of EDDs may provide considerable performance improvement. Similarly, an optimized configuration may reduce the number of EDDs required to achieve a target performance objective. In this paper an existing building with added linear viscous dampers is redesigned based on different performance index optimization. The results indicate that the optimal device configurations are highly related to the dynamic properties of the structure and its required performance index. In one instance, where the cost is the major concern and a performance requirement is placed on story drift limitation, the total device damping coefficient can be reduced by 26%.

Technical Brief

94. A SIMPLE METHOD FOR THE DESIGN OF OPTIMAL DAMPER CONFIGURATIONS IN MDOF STRUCTURES

Existing methods for the design of optimal configurations of supplemental dampers are usually not simple enough to be used routinely, and typically lead to different damper sizes at virtually every story. This can be avoided with the Sequential Search Algorithm, which lets the designer control the number of different damper sizes. In this paper, a simplification to the Sequential Search Algorithm is developed. This Simplified Sequential Search Algorithm makes it easy for engineers to deal with damper added structures. It was found that the efficiency of damper configurations given by the proposed Simplified Sequential Search Algorithm is comparable to the efficiency of damper configurations given by more sophisticated procedures. The applicability of the method is limited to those cases where the response of the structure with added dampers remains linear.

White Paper

93. EXPERIMENTAL STUDY OF RC BUILDING STRUCTURES WITH SUPPLEMENTAL VISCOUS DAMPERS AND LIGHTLY REINFORCED WALLS

This paper describes an experimental evaluation of viscous dampers used to reduce seismic motion in reinforced concrete moment-resisting building structures. Common practice in Taiwan is to use lightly reinforced concrete exterior walls and interior partition walls, which not considered for their contribution of stiffness and strength in the design process. As these additional walls greatly reduce relative story displacement and velocity, it has been suspected that the effectiveness of supplemental dampers would be very limited. However, the test results show that a new displacement multiplying mechanism, the toggle brace damper system, is effective even with a small relative story drift in the seismic response control of the structure. Dampers produce significant force and displacement reduction in the moment-frame structures that were investigated.

White Paper

92. ENERGY DISSIPATION SYSTEMS FOR SEISMIC APPLICATIONS

This paper presents a summary of current practice and recent developments in the application of passive energy dissipation systems for seismic protection of structures. The emphasis is on the application of passive energy dissipation systems within the framing of building structures. Major topics that are presented include basic principles of energy dissipation systems, descriptions of the mechanical behavior and mathematical modeling of selected passive energy dissipation devices, advantages and disadvantages of these devices,
development of guidelines and design philosophy for analysis and design of structures employing energy dissipation devices, and design considerations that are unique to structures with energy dissipation devices. A selection of recent applications of passive energy dissipation systems is also presented.

White Paper

90. REHABILITATION OF A 1985 STEEL MOMENT FRAME BUILDING

A 1985 steel moment frame was seismically upgraded using passive energy dissipation, without adding stiffness to the system. The design and analysis techniques for sizing the Velocity Braces and their impact on the demand capacity ratios are reviewed in this paper. The original structure was built in the San Francisco Bay Area in compliance with the 1985 Uniform Building Code (UBC). The moment frame contains the classic pre-Northridge nonductile moment connection. Nonlinear time history analysis was used to design a damper system that provides a significant decrease in seismic response.

Technical Brief

88. SEISMIC PERFORMANCE OF LIGHT FRAMED WOOD STRUCTURES WITH TOGGLE-BRACED FLUID DAMPERS

In recent years, seismic damping systems have been employed in numerous steel and concrete framed buildings. Such systems dissipate a significant portion of the seismic input energy, thereby relieving the energy dissipation demand on the structural framing system and thus reducing damage. As part of a NEESR project to develop a performance based approach to seismic design of multi-story light framed wood structures, the application of damping systems to such structures has been evaluated via seismic shaking table tests and numerical simulations. This paper focuses on the results from shaking table tests of shear walls employing toggle braced fluid dampers. The results demonstrate that toggle braced fluid dampers provide a significant increase in the seismic resistance of the walls, allowing them to achieve high levels of performance when subjected to strong ground motions.

White Paper

87. FLUID DAMPERS FOR SEISMIC PROTECTION OF WOODFRAME STRUCTURES

In the recent past a large number of steel framed buildings have used supplemental energy dissipation systems to provide seismic protection. However, the application of such systems to wood frame structures has been essentially non-existent except for a limited number of experimental laboratory studies. This paper presents a numerical study of the application of fluid dampers for seismic protection of wood framed structures. Such dampers dissipate energy via orificing of a fluid. The seismic response of a wood framed shear wall with and without dampers is evaluated via nonlinear finite element analyses. The results of the analyses demonstrate that the dampers are capable of dissipating a large portion of the seismic input energy while simultaneously relieving the inelastic energy dissipation demand on the shear wall.

White Paper

82. FULL-SCALE SHAKE TABLE TESTS OF 5-STORY STEEL BUILDING WITH VISCOUS DAMPING

Realistic simulations of earthquake responses were conducted in March 2009 for a full-scale 5-story building specimens with dampers using the E-Defense, the world’s largest three-dimensional shake table. The building was tested repeatedly, inserting and replacing each of 4 damper types, steel damper, oil damper, viscous damper and viscoelastic damper. This paper discusses the test method and test results as well as details of the 5-story building specimen. Performance improvement by the dampers is addressed for moderately tall buildings that constitute a major portion of the building stock.

Investor Information

2022 Q1 Important Links

 

Investor Information

2021 Q4 Important Links

Investor Information

2021 Q3 Important Links

Investor Information

2021 Q2 Important Links

Investor Information

2021 Q1 Important Links

Investor Information

2020 Q4 Important Links

Investor Information

2020 Q3 Important Links

Thank You!

A Taylor Devices Representative will be in touch shortly.

Investor Information

2020 Q1 Important Links

Investor Information

2019 Q4 Important Links