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Abstract. This paper presents the design, analysis, testing and modeling of an

electrorheologicai (ER) fluid damper developed for vibration and seismic protection
of civil structures. The damper consists of a main cylinder and a piston rod that

pushes an ER fluid through a stationary annular duct. The behavior of the damper
can be approximated with Hagen—Polseuille flow theory. The basic equations thal
describe the fluid flow across an annular duct are derived. Experimental results on
the damper response with and without the presence of electric field are presented.

As the rate of deformation increases, viscous stresses prevail over field-induced
yield stresses and a smaller fraction of the total damper force can be controlled.
Simple physically motivated phenomenologica! models are considered 1o
approximate the damper response with and without the presence of electric field.
Subsequently, the performance of a multilayer neural network constructed and
trained by an efficient algorithm known as the Dependence Identification Algorithm
is examined to predicl the response of the electrorheological damper. A
combination of a simple phenomenolegical model and a neural network is then
proposed as a practical tool to approximate the nonlinear and velocity-dependent

damper response.

1. introduction

Conventional seismic design of buildings and bridges relics
on the ability of structures to behave inelastically and
dissipate the induced seismic energy through hysterctic
action. Most structures absorb earthquake energy through
localized damage of their supporting members. During
the last two decades considerable advances have been
accomplished in the arca of seismic protection of structures
due to developments in base isolation and supplemental
energy dissipation. New promising systems have been
developed which can be incorporated in structures to
improve their response when excited by earthquakes (ATC
1993). These systems also known as earthquake protective
systems consist of passive, active and semiactive devices
and can considerably minimize the scismic demand of
buildings and bridges.

Semi-active dampers for retrofit and vibration control
of structures combine the advantages of passive structural
conirol (Censtantinou and Symans 1993) with the benefits
of active structural control (Housner et al 1994) to produce
optimal, yet stable and reliable damping systems, Different
types of semi-active dampers have been proposed ranging
from hydraulic dampers with mechanically controiled
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orificing (Kawashima and Unjoh 1994, Patien et al 1994,
Symans and Constantinou 1995) to electrorheological
dampers (Gavin and Hanson 1994a, b, Burton et «!f 1996,
Makris et al 1996).

The attraction of semiactive dampers that use
controllable fAuids such as electrorheological (ER) or
magnetorheological (MR) fluids is that they do not involve
moving parts to control the fluid flow. Furthermore, they
are relatively inexpensive compared with hydraulic dampers
with mechanically controlled orificing. A survey on the
applications of ER fluids has been presented by Duclos
(1988), and rccently by Stanway et al (1996).

Within the context of structural control, Ehrgott and
Masri {1992) presented identification techniques to model
the behavior of a small ER damper that operates under shear
flow; Gavin and Hanson (1994a, b) designed and tested an
ER damper that consists of a rectangular container and a
moving plunger comprising nine flat parallel plates which
are rigidly interconnected.

A prototype ER damper that generates flow through a
stationary annular duct was designed constructed and tested
by the authors (Burlon et el 1996, Makris et al 1996). The
proposed ER damper can deliver relatively large forces and
has potential to be used for seismic and vibration protection
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of civil structures. A photograph of the constructed damper
is shown in figure 1 (top), and a schematic of its design is
shown in figurc 1 (bottom). The damper consists of an
outer cylinder and a double-cnded piston rod that pushes
the ER {luid through stationary annular ducts. The electric
ficld is created perpendicular to the fluid flow.

In this paper we first present the cquations that
approximate the flow of a controllable fluid when it flows
through a stationary annular duct. These cqualions arc
important for the design and size of the damper, since
they rclate the pressure drop across the piston head to
the piston velacity, the physical properties of the ER fluid
and thc geometric characteristics of the damper. The
validity of these equations is investigated by comparing
their prediction with the measured response of the ER
damper. Subscquently, we investigale the cffectiveness of
parametric and nonparametric macroscopic models which
approximate the damper response at the force—displacement
level, In particular it is shown that the combination ol a
two-parameler Maxwell model with a neural network is an
effective model to approximate the nonlinear and velocity-
dependent response of the proposed ER damper.

2. Viscous, rigid-viscoplastic and
elastic-viscoplastic behavior

In this section the flow across an annular duct is reviewed
for Muids described by different constitutive laws. Figure 2
shows a cross scction of the annular duct that consists of the
inmer rod (electrode) and Lhe outer cylinder (ground). Under
the condition that laminar {low prevails, the flow along the
bypass can be approximated by the Hagen—Poiscille theory.
Laminar llow occurs in practice when the Reynolds number,
R = vh/v (v = average velocity of the fluid in the duct,
fi = characleristic length, v = kinematic viscosity) has a
value less than, R, = 2300. Since the flow rate across
the bypass is @ = v,A,/n (v, = piston vclocity, A, =
piston arca, # = number of bypasses—in this case n = 1);
the Reynolds number for the flow along the ER duct with
Ih&d,is
vh Q

Rp=— = —. (N
v wedv

When ER dampers are incorporated in the skeleton of a
building for scismic retrofit, the expecled Reynolds number
assumes values smaller than ten (R, < 10, Makris et al
1996). Accordingly, since the Reynolds number is two lo
three orders of magnitude less than R, the flow within
the damper is laminar.

Equation (1) was derived for viscous low across a thin
annular duct in which /i & d (sce figure 2). In this case the
arca of the duct is wdhi. When an clectric fcld is applied,
the material exhibils a yicld stress and part of the material
moves as a rigid body without deforming. In this case, the
characteristic dimension is less than /i, and the Reynolds
number reduces further (Phillips 1969). Accordingly, the
viscous forces and incrtia forces developed within the fluid
arc of the same order of magnitude,

With reference to figure 2 one can casily show by
considering equilibrium of any ring of the material, that
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under the absence of inertia forces, the disteibution of
slresses across the bypass is linear and given by
r
L

where Ap is the pressurc drop across the piston head, r
is the radiat distance from the center line of the ER duct,
and L is the length of the duct (see figure 1), The stress
distribution given by (2) is independent of the material
that flows. In the case where it <« d, the solution for
the Poiscille flow between concentric cylinders collapses o
that for low between parallel plates.

Ter(F) = Ap (2)

2.1. Flow of viscous fluid

For a viscous [luid with zero-shear-rale viscosity, v, the
shear stress—strain law is

Ter = VW };'xr (3)

where ., is the shear strain rate, The pressure drop due to
viscous stresses under steady (low is given by

12vpL. O
Ap, = =%
i wdh?

For oscillatory {low, the pressure drop is influenced by
the incrtia of the fluid. The complete solution for flow
through an annular circular cross section has been presented
by Miiller (1936). The pressure drop generated from the
accelerating flow departs from the result given by (4) only
at very high fuid accelerations, which are nol of interest in
carthquake engincering.

4)

2.2. Flow of viscoplastic material

The phenomenon of electrorheology was first reporicd
by Winslow (1949) and is the considerable variation ol
rheological propertics of some [luids when an clectric field
is applicd. The manilested resistance to flow depends
on the nature of the fluid, the conditions of flow and
the orientation and strength of the applicd electric field.
In some cascs complele conversion from liquid to solid
behavior is achicved for which a finite yicld stress, t,, must
be exceeded o produce How. When the latter is the case,
it can be said that under the presence of an clectric field
these “fluids’ become ‘solids’, and they behave elaslicatly
when Joaded at stresses smaller than the ‘yield' stress.
Recent revicws on the phenomenon of clectrorheology and
its applications have been presented by Block and Kelly
(1988), and Jordan and Shaw (1989).

In the casc of a viscoplastic malerial, the shear stress
T, (#) has o exceed the finite ‘yicld’ stress, 7;, lo
initiaste {low. This value of the ‘yvield' stress can be
understood as the capacity of the material to exist in a solid
state. If the stress-demand, 1,,.(r), given by cquation (2)
exceeds the capacity of the ER material, 7y, then the ER
malerial adjacent to the walls will yicld and flow. For
a rigid-viscoplastic material the vclocity profiles across
these “fluidized’ rings are parabolic whereas the velocity
profile across the remaining solid-core ring is constant.
From equation (2), one immedialely recognizes that as the
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Figure 1. View of the constructed electrorheological damper (top) and a schematic of the proposed electrorheological fluid

damper (bottom).

pressure drop increases, more material yields. More on
the analysis of viscoplastic Poiscille flow can be found
in Phillips (1969). When the stress—strain law of a rigid
viscoplastic material is described with the Bingham model,

Tar = Ty Sgn(}.’xr) + Vo¥ar (5)

the pressure drop, Ap, must satisfy (Phillips 1969, Makris
et al 1996)

12uLQ 5 L (r,. NEAR
Ap= 2023 2y 2 {2 . (6
P wdh? ( Aph + Ap h) ) ©

Equation (6) is a nonlincar cubic equation in Ap, which
can be expressed as

I 12wulQ A
Apt — {3, 2 4+ == )apt+4aX{ ) =0.
P (r’h+ wdit ) praniy) =0 O

The solution of the cubic equation given by (7) is available
in standard mathematical handbooks (Spicgel 1968). In

the limiting case of a purely viscous material (7, = 0)
cquation (7) collapses to (4).

2.3, Flow of elastic-viscoplastic material

The ER fluid used within the damper consists of a carrier
which is silicone oil with specific density 0.970, and the
suspended solid is zeolite with a concentration of 46% by
weight. Oscillatory viscometric tests under the presence
of an clectric ficld demonstrated that the silicon-oil—zcolite
mixture manifests more pronounced clectrorheological
properties than a similar mineral-oil-based mixture studied
by Gamota and Filisko (1991) and Gamota ef af (1993).
Figure 3 shows recorded stress—strain loops of the silicon-
oil-zeolite mixture at different values of the electric field
and at frequencies of 1.0, 5.0 and 10 Hz.

The elastic behavior of the material can be clearly
obscrved when the motion reverses direction (sec figure 3},
For instance, at £ = 3 XV mm™! the slope of the loop at
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T,(r), stress
27 demand

Figure 2. Stress and velocity profiles of the yielding ER fluid across the bypass.

maximum strain is equal (o the elastic shear modulus of the
material before yielding. In the foregoing analysis where
cquation {6) was derived, the elasticity of the material
before yielding was neglected and the ER fluid was assumed
rigid-viscoplastic.

Ehrgott and Masri (1992) and Kamath and Wereley
(1996) proposed system identification lechniques to capture
the clastic-viscoplastic behavior of ER fluids. Recently, a
continuum mechanics constitulive model that accounts for
the elasto-viscoplastic behavior of the ER fluid has been
devcloped by Makris et al (1996):

= VO}}.U + Ty Sgn(}"xr)-
(8)
Equation (8) is a lincar first-order equation with variable
coefficients, and its analytical selution can be constructed
using an integration factor, It is recalled that the diflerential

|:n0).’xr + Ty Sgn(}}xr):I d'!.'x,-
Tar -+ B -
Gy de

equation

dr{)

o T Rz (1) = Q1) )

has the solution
3
7(6) = ¢~/ ROU U 0! RMEgE + C]- (10)

The solution of (8) can also be expressed in the form
of (10). For a harmonic strain-rate-induced excitation,
Yur(f) = wypcoswt, the exponent, f R(£)ds, in (10), for
—~/2 < ewt < wf2 is given by
j‘ Gwyy cos wi dt

nowyo coswt + 7y

654

[ Jar -1 lan(wt/2)]
— | wt — atan
o a1 a+1

at > 1

i[c:ut — tan(wi /2)]
1)

. (1)

a=1
[ : u ln,/%ﬂan(w:/z)}
Y et —

o Vi—a* o [ an(w2)

at <1

in which @ = t,/nowyp. For the case where 7/2 < ot <
3n/2, the dimensionless quantity, a, has to be replaced by
—a, and the symmetric part of the response is obtained.

For the expressions of the intcgration-factor-exponent
given by (11), a closed form solution of (10) is not known to
the authors. Neverthcless, equation (10) can be integrated
numerically. Figure 3 compares the predictions of the
proposed model at three different frequencies {(f = 1 Hz,
S Hz and 10 Hz) of the induced strain-rate excitation.
The comparison is very encouraging. The values of the
yield stress, 7,(3 kV mm~! = 0.26 psi (1.8 kPa), elastic
shear modulus, G == 2,46 psi (17 kPa), and ficld-dependent
zero-shear-rate viscosity, no(3 kV mm™' = 0.0019 psi s
(13 Pa s).

Figurc 4 (top) shows the response of the model at
the zcro frequency iimit. The results obtained with the
numerical integration of (10) with @ = 2000 arc compared
with the closed form solution of (10), which is known when
a = oo (Makris ef al 1996). The results obtained with the
two solutions are almost identical. Figure 4 (bottom) also
depicts the model prediction at high frequencies (a* < 1).
The shape of the loop (solid line) suggests that at the
high-frequency limit, the response of the model is linear
viscoclastic. In fact, as frequency increases, the model of
(8) reduces to the classical lincar Maxwell model. This can
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Figure 3. Comparison of recorded and predicted stress—strain loops of the ER fluid at different frequencies and an electric
field of 3 k¥ mm~'. Dashed lines: experimental data. Solid lines: prediction of proposed model! (equation (8)). 1 psi =

6.89 kPa,

be shown by observing equation (11). At high frequencies
@<« equation (11), reduces to

f Gwyp cos wlf
Nowyy COS @i -+ Ty

dt

G 1 t 1/2

= —|wt—aln +a+ tanw!/2) (12)
notw 1 4 a — tan{wt /2)

for 2 < 1 and —7/2 < @t < n/2. The largest

value of the argument of the logarithm in (12) is when
wt = /2 = tan(wt/2) = §. At this limit the second term
within the square brackets in (12) becomes a In(2 + a)/a

which tends to zero as a tends to zero. Accordingly, as
a — 0 then

|

and equation (10) becomes the linear Maxwell model (Bird
et al 1987):

2(t) = =Gl f

—CQ

Gwyg cos wt
t—r —t

Mo

owyp €0 w! + Ty

I

Gy (£)elCrm% gt (13}

Figure 4 (bottom) compares the prediction of the proposed
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Figure 4. Behavior of the proposed constitutive model at the low (top) and high {bottom} frequency limits. 1 psi = 6.89 kPa.

model for the value of a = 0.05 with the prediction of
the Maxwell model given by (13). The two responses
arc almost identical.  Consequently, the model given
by equation (8) caplures the ER fluid response at ali
frequencies. However, a closed-form selution for Lhe
pressure drop, when the stress—strain law is described by
(8) is not known to the authors, Nevertheless, numerical
studies show that the clasticity of the material plays
a negligible role in the macroscopic response of the
damper and cquation (3) (rigid-viscoplastic behavior) can
be used instcad of the more realistic cquation (8) (clastic-
viscoplastic behavior).
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3. Experimental program and response prediction

Dynamic testing of the damper was conducted using the
arrangement shown in figure 1 (lop). A hydraulic actuator
imposes a prescribed displacement history along the axis
of the damper. The force developed in the damper is
measured through a stationary load cell which is connected
between the damper and the reaction frame (left end on
figure 1). The displacement of the damper is measurcd
using an LVDT (lincar variable differential transduccr)
which is located within the actuator.

The eleetric ficld on the ER duct is applied through the
cathode connected at the right cnd of the inner cylinders
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Figure 5. Comparison of recorded and predicted force-displacement loops of the electrorheological damper with and without

electric field (1 Ib = 4.448 N, 1 in = 25.4 mm).

of the bypasses shown in figure 1 {top). The other wire
shown on figure 1 is connected to a lemperature transducer
to monitor the temperature of the [uid along the bypass.
This temperature exceeds the temperature of the cylinder
of the damper, since fluid velocitics along the bypass
arc larger. The recorded temperature should not exceed
approximatcly 240°C (450°F) to prevent damaging the
insulators. The recorded temperature during experiments
ranging from 75°F to 85°F. The maximum current that
we measured during the cxperiments was of the order of
0.5 mA and the resulting maximum power nceded from the

ER damper is less than 1.0 W,

Figurc 5 shows rccorded (left) and predicted (right)
force—displacement loops without electric field (£ = 0) and
with £ = 3 kV min~'. At zero electric field, the recorded
loops are nearly clliptical, whercas at £ = 3 kV mm™!
some nonlinear behavior becomes apparent. As the piston
velocity increases, viscous effects dominate over plastic
effects, and the fraction of the force that can be controlled
is reduced.

The predicted loops shown on the right of figure 5 arc

557



N Makris et al

1200 T v T T ;
E= 3kV/mm
w000l ONE BYPASS €= 0 kV/mm E= 3kVimm
Q E=0KkV/mm
X E=3kV/mm
800} |
E= 0 kV/mm
o
w
O 600 i
(104
@]
LL \
400 1
TWO BYPASSES
+ E=0kV/mm
0 Q 1 1 1 1 L
0 05 1 1.5 2 25 3
PISTON VELOCITY [in/s}

Figure 6. Comparison of recorded amplitudes of piston forces as a function of maximum piston velocity from harmonic

oscillatory tests.

computed with the equation
P() = Ap(1)A, + Pysgnli(?)] (14)

where P, == 25 [bs (112 N) is a permanent friction force
exerted on the piston rod from the damper scals and A,
is the arca of the piston head. Ap(¢) is the pressure
drop across the piston head, Herein the pressure drop
was computed using equation (7) which is based on the
approximate rigid-viscoplastic model given by (5). The
value of the yield stress used in cquation (7) is the value
that was obtained from the oscillatory viscomelric tests,
7,3 k¥ mm™") = 0.26 psi (1.8 kPa). At E = 0,
7y = 0 and the value of the zero-shear-rate viscosity used

K C

P(t)
P —-

NN \\é\\
L,

L,

uft)
Figure 7. Schematic of the BingMax model.
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is g = 0.001 psi s (7 Pa s). When the electric field is
present the value of the viscosity at E = 3 kV mm™',
1o = 0.0019 psi s (13 Pa s), was used.

Figure 6 shows the amplitudes of recorded force versus
piston-velocity ampliudes at zero ficld, (0) and at E =
3 kV mm~!' (x). The scatter in the data is due 1o
viscous heating during testing. As the harmonic lests were
conducted one after the other the damper was subjected
to many cycles and in some tests the temperature along
the bypass was higher than during others (ranging from
75°F to 85 °F). At zero field and small piston velocities the
damper operates like an ideal dashpot (F{t) = C(du/dz)),
where C is the small-velocity damping constant which can
be computed from

12n0L
= am (13)

where A, is the piston-head arca. With reference to figure 1
the geomelric characteristics of the constructed damper
are: L = 215 in (54.6 mm), d = 0.563 in (14.3 mm),
h = 0.0315 in (0.8 mm), 4, = 1.315 in (33.4 mm),
d, = 0.443 in (11.25 mm). Using these values and with
ng & 0.001 psi s (7 Pa s), equation (15) yields a value of
C =690 1bsin~! (120 kN s m™!). This value is close to the
slope of the solid line shown on figure 6 for one bypass and
indicates that the Hagen—Poiseuille theory predicts well the
damper respense for piston velocities less than 0.6 in s~.
The finite value of the force at zero velocity and E = 0 is
duc to the friction force that the seals exert on the rod.
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Figure 8. Comparison of recorded and predicted forces and difference signals at £ =3 kv mm-~! of the Maxwell model} (top

2 plots) and the BingMax model (bottom 2 plots).

At higher piston velocities the damper delivers a force
proportional to the velocity raised to a power which is less
than onc (F () = C(du/d)®, 0 < o < 1). This desirable
bechavior is achieved because at high piston velocities some
fluid flows between the piston head and the main cylinder.

4. Macroscopic modeling of the damper response

Modeling the response of semi-active dampers is a key
issue in the design and implementation of these devices

in civil structures. Structural control engineers are

primarily interested in macroscopic models that describe
the response of the damper at the force—displacement
level. Macroscopic models can vary from physically
motivated mechanical models to nonparametric models
used for pattern recognition or function approximation {¢.g.
arlificial neural nctworks). The problem of developing
a macroscopic model that predicts the response of a
structural or mechanical system does not have a unique
solution. Poincaré (1929) pointed out that if a physical
phenomenon can be represented by one mechanical model
it can be represented by many other models. Thus ‘springs’,
‘dashpots’ and ‘sliders’ could be arranged in many different
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Figure 9. Recorded input—output signals used to train the neural network at £=0 and E =3 kV mm~",

patterns with all of them being equivalent (Shames and
Cozzarelli 1992).

4.1. Phenomenological models

The challenge in modcling the response of scmi-aclive
dampers is Lo caplure satisfactorily both nonlinear and
frequency-dependent cffccts.  Burton (1996} studied in
detail the performance of standard phenomenological
modeis, such as the Bingham model, the Maxwell model
and a combination of these two models, named the
BingMax model, which is schematically shown in figure 7.

Herein, it is shown that the BingMax model captures
satisfactorily both hysterctic and  frequency-dependent
behavior. The constitutive law of the BingMax model
shown on figure 7 can be expressed as

P(t) = Kf eIy dr + Pysgnln(@)). (16)
0

The top plot in figure 8 compares the prediction of a
calibrated standard Maxwell model with the recorded force
from the damper when subjected to the 1940 El Centro
displacement history, The second plot on figure 8 shows the
difference signal between the recorded and predicted signal
with a peak valuc of PV = 257 lb and a root mean square
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valtue of RMS = 56 1b. The third plot on figure 8 compares
the prediction of the BingMax model given by (16) with
the recorded force from the damper when subjected to the
1940 El Cenwro displacement history; the bottom plot on
figurc 8 shows the difference signal between the recorded
and predicted signal with PV = 109 Ib and an RMS =
31,14 lb. Clearly, the BingMax model outperforms the
Maxwell model.

4.2, Nearal network models

Neuwral networks are useful as models of nonlincar
dynamical systems because of their ability to be universal
function approximators. Scveral types of neural network
appear to offer promise for use in function approximation.
These include the multi-layer neural network trained with
the back-propagation algorithm commonly attributed to
Rumeclhart ef al (1986), thc recurrent ncural nctwork
such as the feedback network of Hopfield (1982), the
content-addressable memory of Kohonen (1980), and the
Gaussian node network of Moody and Darken (1989).
The choice of which ncural network to use and which
training procedure to invoke is an important decision and
varies depending on the intended application. It has been
shown that leedlorward neural networks can approximate
arbitrarily well any continuous function; this, in fact, can
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Figure 10, Comparison of recorded and predicled forces and difference signals at £ =3 kV mm~! of the neural network
model (top 2 plots) and the combined modsl (bottom 2 plots).

be accomplished using a feedforward network with a single
hidden layer of neurons and a lincar output unit,

Herein, the Dependence Identification Algerithm (DIA)
(Moody and Antsaklis 1995) is utilized to construct and
train a multilayer ncural network to predict the response
of the electrorheological damper. The DIA bears some
similarities 1o the boolcan network construction algorithm,
however it is designed to work with continuous training
problems and it uses the concept of linear dependence,
instead of the desired boolean output value, to group
patterns together.  The algorithm does not share the

problems of network pruning techniques because it builds
from a small network up to a large one, and because il does
not use gradient descent, The DIA is an extremely fast
algorithm for function approximation with the advantage
that it generates an appropriate network, thus climinating
the nced for experimentation to determine the number of
hidden neurons. The DIA creates a network and sets of
initial conditions which are suitable for further iterative or
on-linc adaptive training with gradient techniques such as
back-propagalion.

The DIA utilizes displacement-force input—output pairs
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Figure 11. Recorded input-output signals used to

recorded in the laboratory to construct and train the neural
network. The neural networks are single hidden layer
networks with seven inputs, 99 neurons, one output and six
delays. Displacement histories from three earthquakes have
been uscd as an input to the fluid damper. The threc input
seismic records used are the 1985 Mexico City carthquakes,
the 1987 Whittier Narrows earthquake (Tarzana record) and
the 1992 Petrolia earthquake which are shown on the left
of figure 9. The resultant force needed to maintain the
totion was recorded with the load cell shown on figure 1.
Figure 9 (center) plots the corresponding recorded forces
when £ = 0 and figure 9 (right) plots the corresponding
recorded forces when E =3 kV mm™".

Figure 10 (top) compares the prediction of the trained
neural network with the experimentally measured force.
The agreement is acceptabie, but both the peak value,
PV = 348 b, and the root mecan square, RMS =
47 1b, of the resulting different signal arc larger than the
corresponding values resulting from the phenomenological
BingMax model shown at the bottom of figure 8. Similar
results have been obtained for the case where £ = 0.

4.3. Combined model

Modeling of the damper can be improved by combining
phenomenological models with a neural nctwork. The phi-

562

train the combined mode! at £ =0 and E =3 kV mm~'.

losophy advanced herein is that a simple phenomenological
model will capture most of the lincar response of the ER
damper and the neural network will approximate the in-
herent nonlinear behavior of the ER damper resulting from
the yielding of the fluid together with additional nonlinear-
ities originaling from the frictional behavior at the attach-
ments of the ER damper. Initially, we investigated the casc
where the neural network was trained on the difference sig-
nal between the prediction of the BingMax model and the
recorded force history. However, since the BingMax model
captures most of the nonlinear response, the difference sig-
nal was practically a noise with virtually no cohcrence, and
the DIA did not converge. In contrast, when the neural
network was trained on the difference signal between the
prediction of the Maxwell medel and the recorded force
history, the DIA converged. Figure 11 shows the input—
output training pairs used to generate the neural network
architecture and back-propagation for E = 0 (center) and
E =3kVmm™' (right). The number of neurons used in the
hidden layers are shown on figure 10 (bottom}. Figure 10
(bottom) shows the difference signal between the prediction
from the combined model and the recorded response. Both
peak values and root mean squares are improved when com-
pared with all other modcls. Finally, figure 12 shows the
performance of the combined model when predicting har-
monic responses at different frequencies (F = 0.5, 2.0 and
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Figure 12. Comparison of recorded and predicted force—displacement and force—velocity loops at £ =3 kv mm~*. Solid line:
combined Maxwell model with neural network: dashed line: recorded motion. Top: f = 0.5 Hz; center: f = 2.0 Hz; bottom:

f=4Ha

4.0 Hz) . The performance is encouraging since the neural
network has only been trained to earthquake motions.

5. Conclusions

In this paper the mechanical behavior of a silicon-oil-based
ER fluid and the flow across a cylindrical duct of an ER
damper developed for scismic protection applications are
analysed. The developed damper consists of an outer
cylinder and a piston rod that pushes the ER fluid through

a stationary annular duct. The ER fluid used in the
damper manifests viscosity, plasticity and elasticity. An
elastic-viscoplastic law al the stress—strain level has been
proposed that predicts satisfactorily the fluid behavior at
different deformation rates, The flow of the ER fluid
through the bypass can be approximated with the Hagen—
Poiseille flow theory, and a dependable formula was derived
which relates the pressure drop to the piston velocity,
the physical properties of the fluid and the size of the
damper.  Subsequently, the performance of physically
motivated phenomenological models and neural networks
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has been examined when predicting the measured response
of the ER damper. It was found that a neural network
constructed with the Dependence Identification Algorithm
when combined with a standard Maxwell model predicts
satisfactorily the response of the damper with and without
the presence of electric field.
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