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ABSTRACT

Combining shock and vibration isolation into a single isolation mount is investigated
numerically through the use of the Bouc-Wen model of a magnetorheological fluid
damper in parallel with an air spring. The stability and dissipative capabilities of the
Bouc-Wen model are proven mathematically. The response characteristics of this hybrid
isolator to shock and vibration inputs is explored. The advantages of combining shock
and vibration isolation into a single package is discussed.

I: INTRODUCTION

A classic problem in isolation system design is the design of a single isolator that can perform equally well as a
shock and a vibration isolator. This problem arises due to the fact that a good vibration isolator tends to be a poor
shock isolator and a good vibration isolator tends to be a poor shock isolator. Most attempts to solve the combined
isolation problem with a passive device quickly lead to frustration. This is certainly the case in shipboard isolation
applications where many inputs are often present simultaneously. The typical approach to solving the shipboard
isolation problem involves separate passive isolators for shock and vibration. This inevitably leads to modifying
vibration isolators to survive shock inputs and/or modifying shock isolators to perform adequately as vibration
isolators.

When many different inputs are present, as in shipboard applications, an active, or semi-active, isolation system is
justified. Active, or semi-active, isolation systems can be designed to simultaneously isolate for many combined
and varying inputs. The advantage to combining shock and vibration isolation into a single package is obvious. A
single combined isolation system replaces two separate systems and therefore reduces weight and increases
available volume. This is particularly important in submarine applications where space is limited. Also, with
varying and diverse inputs, a combined active isolation system can be designed to perform better than separate
passive shock and vibration isolation systems operating in parallel.

For shipboard applications the ideal isolation system would provide effective vibration isolation in the 10 to 200 Hz
range and shock isolation from a variety of inputs such as underwater explosions, wave slap, impact, etc. Thus a
"soft" isolator with a natural frequency of approximately 2Hz is desired that can survive varying shock inputs. An
ideal vibration isolator that meets this design criteria is an air spring. Air springs have a low natural frequency, but
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tend to behave poorly as shock isolators due to their inherently low damping. An ideal combined isolator would be
an air spring that could provide high, variable damping forces on demand during a shock event. Producing high,
variable damping forces is an ideal application for a magnetorheological (MR) fluid damper. Therefore, combining
an air spring with an MR damper in parallel would provide an ideal combined isolation system provided the optimal
damping force can be applied and varied rapidly enough to attenuate the shock input and meet rattle space

requirements.

To investigate the effectiveness of an air spring/MR damper combination as a combined isolation system requires an
accurate model of the highly nonlinear MR damper. One such model that very accurately predicts the response of
the MR damper is the so-called Bouc-Wen model. The stability and dissipative capabilities of the Bouc-Wen model
can be proven mathematically as will be shown. Since this paper is a numerical study, the MR damper under
consideration will be a commercially available model developed by the Lord Corporation (Model RD-1003) which
has been adequately characterized in several papers [2-3]. The air spring under consideration is also a commercially
available model manufactured by Firestone (Model 20). The air spring was chosen as it's physical dimensions and
capacity are a good match for the MR damper. The force-deflection behavior of the air spring was provided by

Firestone and incorporated into the model.

II: SYSTEM MODEL

The system under consideration will be modeled as a single-degree-of-freedom (SDOF) system consisting of a
modified Bouc-Wen model with an additional spring and damper to model the air spring. The complete model is

shown in Figure (1).
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Figure 1: SDOF System Model

The core of the model is the modified Bouc-Wen model to which several papers have been devoted [2-3]. The next
section discusses the stability and dissipative capabilities of the modified Bouc-Wen model.

III: STABILITY OF THE MODIFIED BOUC-WEN MODEL

The stability of the modified Bouc-Wen model will be addressed by using the SDOF model shown in Figure (1). In
the following discussion the air spring stiffness and damping shown in the figure are not included. The dynamics of

the system can be described as follows:
mJ'c'=az+k0(y—x)+c0(j1—5c)+k1(r—x) (1a)
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Putting into state space form by letting x; =x, x; =y, and x, =z, we get
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k

L P L RN Y S WL A (2b)
m m m m

) 1

X3 = [0 (%, —x3)+cox, —axy|=g (2¢)

Co TC
X4 = —?’|g—lex4,x4|n_1 —flg—x; Jxa|" + 4lg—x,) (2¢)
where,
1
g%y = [kox) —cyx, —koxs — oy | €)]
co +¢y

Finding the equilibrium point x =0, yields:
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Realizing that the first three states are linear in their makeup, the model can be thought of as being composed of two
subsystems, one linear in the first three states, and one nonlinear in the fourth. Substitution and manipulation puts
the states into the following form:
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This result leads the stability search into the passivity formalism [1] for linear systems. We can now look at the
whole system as a composite of two subsystems, one linear and the other nonlinear, that transfer energy between one

another. Putting the equations into feedback form, the input to the linear system, u,, will be the negative of the
output of the nonlinear system, x4, (ie. y, =x,, u; =-y,) [1], while the output of the linear system will be
Y1 = & —%,, which will be the input to the nonlinear system (u, = y,). This results in the following system of
equations:



in state space. Taking the derivative of ¥, leads to, after substitution and manipulation
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Adding a(le u -yl ul) to the above result for ¥ results in
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which after manipulation, results in
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Letting
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we get the power form, therefore

Vo =aylu _gl(t)

where g; (t) >0 forall £20. Therefore, ¥, is not only passive, but dissipative since [1]
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The passivity of the subsystem is preserved if multiplied by a strictly positive number since this simply scales the

first term. Turning our attention to the nonlinear subsystem, a Lyapunov function is represented by:

1
V2 =Exi

Taking the derivative of V, with respect to time results in

(19)



Vy = Pxyuy ‘7,”2|x2|x4,n-1 (20)
where P = A-—,B|x4|". With y, =x,,

V= Pyjuy — g5, (t) (21)
where,
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Now the question is if P> 0. It has been proven that due to the mathematics involved in the Bouc-Wen model,
lx4| saturates at a maximum value

1
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At worst case,
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Therefore, V, = Py,u, — g, (t) is passive.

Since,
2) J'sz Uydt %0 (252)
b) j 2, ()dt >0 (25b)

¥, is dissipative.
Thus,

Vy =V, +V, is positive definite (26a)
Vp =V, +V, is dissipative since both subsystems are dissipative. (27b)
Simulations of a nominal type system (all parameters set to one) shows the system's dissipative ability when

subjected to an impulsive input as shown in Figure (2) as well as different sinusoidal inputs with different
amplitudes and frequencies as shown in Figures (3).
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Figure 2: Nominal Parameter System: Impulse Response
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Figure 3a: Nominal Parameter System: Response to Sinusoidal Input (Frequency = 1 Hz)
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Figure 3c: Nominal Parameter System: Response to Sinusoidal Input (Frequency



IV: CONTROL ALGORITHMS

Many control algorithms have been suggested in the literature [2-3] for control of semi-active devices. Here four
control algorithms were considered that have been successfully implemented for control of the MR damper: Control
based on Lyapunov stability theory, Decentralized Bang-Bang control, Modulated Homogeneous Friction and
Clipped-Optimal control. These controllers have been discussed in numerous papers [2-3] on semi-active control
and therefore in the interest of brevity will not be discussed again here. All of the following numerical simulations
were performed using MATLAB® and/or Simulink®?,

V: VIBRATION ISOLATION PERFORMANCE

In order to examine the vibration isolation performance of the combined isolator, the force transmissibility was
plotted for the air spring only and for the air spring with the addition of the MR damper in passive off (i.e., zero
volts applied to the current driver) mode. This was done to show the magnitude of the negative effect of adding the
MR damper on the vibration isolation effectiveness. No voltage was applied to the damper since the most effective
vibration isolation performance will be achieved with minimum damping. The input to the model was an above
mount sinusoidal force of varying driving frequencies. The transmissibility ratio was then plotted versus the
frequency ratio as shown in Figure (4).
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Figure 4: Force Transmissibility Comparison

From Figure (4) it is clear that the addition of the MR damper does not seriously degrade the vibration isolation
performance when compared to the air mount without the damper. This result is surprising as the commercial MR
damper is fairly stiff and uses high friction seals. Note that even with the MR damper, the combined isolator is very
effective over the 10 - 200 Hz vibration isolation range of interest which corresponds to a frequency ratio of
approximately 4.65 - 93.0 based on the 2.15 Hz natural frequency of the air mount.

2 MATLAB® AND Simulink® are registered trademarks of The Mathworks, Iric.



VI: SHOCK ISOLATION PERFORMANCE

In an effort to determine the effectiveness of the air spring/MR damper combination as a shock isolator, the model
was subjected to a base excitation which was derived from a known deck response (Floating Shock Platform with 13
Hz Deck Fixture) due to an underwater explosion. The input was scaled to a 1g peak to avoid exceeding the peak
force output of the damper. The response displacement, velocity and acceleration was recorded for the air mount
without the MR damper and for each of the controllers. Figure (5) shows the base input used in the tests.

BASE VELOCITY INPUT
(1g Scaled from FSP 13 Hz Deck Fixture)

Velocity (in/s)

Time (s)

Figure 5: Base Input used in the Shock Simulations

Figure (6) shows the relative displacement across the mount and Figure (7) shows the above mount accelerations in
g's. Figure (8) summarizes the peak response values.
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Figure 7: Above Mount Acceleration



AIR/MR MOUNT PERFORMANCE

(Input=1g Scaled 13 Hz FSP Deck Fixture)

|

a
!

I {
[

Modulated tralized L .
No Damper Lyapunov Homogeneous Friction Bang-Bang Clipped Optimal
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Figure 8: Peak Relative Displacement and Acceleration

By looking at Figure (8) it is clear that the controllers offer a significant improvement in terms of reducing relative
displacement across the mount. This can be critical if a particular application has a tight rattle space requirement.
This is often the case in shipboard applications, particularly submarine applications, where space is at a premium.
Although three of the controllers increase above mount acceleration over the air spring without a damper they still
offer a significant reduction in transmitted g's. Table (1) shows the acceleration transmissibility, or percent
transmitted g's, for each controller.

CONTROL ALGORITHM ACCELERATION TRANSMISSIBILITY
Lyapunov 0.3924
Modulated Homogeneous Friction 0.2502
Decentralized Bang-Bang 0.1774
Clipped Optimal 0.0941

Table 1: Summary of Acceleration Transmissibility for the Controllers

Particularly effective is the Clipped-Optimal controller which offers a significant reduction in above mount g's and a
relatively small peak displacement across the mount. Note that the air mount without the damper offers a significant
reduction in above mount g's, but it does so at the expense of a large relative displacement. In many applications
this excessive displacement may be unacceptable.

VII: SUMMARY AND CONCLUSION

The modified Bouc-Wen model of the MR damper provides a very accurate model for use in numerical simulations.
As was shown, the stability and dissipative capabilities of the modified Bouc-Wen model can be proven
mathematically. The stability of the modified Ben-Wouc model was proven using the passivity formalism, in which
the mathematical description could be broken down into two subsystems, one linear and one nonlinear. This
passivity approach was valuable in the stability analysis since the other techniques results in inconclusive results.



Some of these techniques researched were the direct Lyapunov approach, Kalman-Yacubovitch theorem, linear
passivity proof, among others.

Putting both the subsystems into feedback form, in which the output of one subsystem is used as the input to the
other, and vice versa, the time derivative of the respective Lyapunov function could be placed in the power form.
The power form representation, which can be written as an external power term plus an internal energy dissipation
term, was used to prove that the two subsystems were both passive and dissipative (based on the internal energy
dissipation term being negative for two subsystems).

Since the two subsystems Lyapunov functions are additive, their derivatives are as well. Since both subsystems are
passive as well as dissipative, the summation of the two composing the entire system shows it as passive and
dissipative as well. Computer simulation of an impulsive and persisting sinusoidal input on a nominal model (all
system parameters set to one) show stability. The impulse shows exponential decaying type response indicative of
dissipative systems. The sine input results show the expected response of dissipative systems, where the output
profiles reach a steady state response as time increases.

An air mount can be a very effective vibration isolator, but tends to be a poor shock isolator due to its inherently low
damping. Air mounts can offer a significant reduction in transmitted acceleration, but tend to do so through large
relative displacements. In many applications these large mount deflections are unacceptable. Adding a controlled
MR damper offers a significant reduction in mount deflection (Up to 89.4%) and a significant reduction in
transmitted acceleration (Up to 90.6%). Preliminary work with multi-degree-of-freedom models show even more
significant reductions in mount deflection and transmitted g's.

Combining vibration and shock isolation into a single unit can offer significant advantages in terms of weight and
space savings. This is particularly important in submarine applications where space is at a premium. Although this
study looked at a scaled mount, the vibration and shock performance characteristics of this hybrid mount apply in a
relative sense to higher capacity mounts. Thus the subject mount could conceivable be scaled for use as a high
capacity shock mount in shipboard applications.

Although semi-active devices require a power source, MR devices are attractive in that they have low power
requirements and are inherently stable, i.e., without power they still behave as passive dampers. Another benefit of
having low power requirements is that it may be possible to create a self-powered device. Having a self-powered,
self-contained, combined shock and vibration isolator would be especially attractive as it would eliminate the need
for external power sources and external controller connections. Future work will look at just this possibility.
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