RESOURCES

High Rise Buildings

181 Fremont in San Francisco, CA
News

181 Freemont Wins AISC Award

Fabricated by The Herrick Corporation (AISC Member, AISC Certified), 181 Fremont is the tallest mixed-use building in San Francisco and a new landmark in the city’s skyline.

Product Info

113. SM Structural Feature on 181 Freemont

From a Space Program Hall of Fame induction to one of the tallest, mixed-use buildings in San Francisco, Taylor Devices continues to provide the most efficient, effective and innovative structural protection products on the planet.

Technical Brief

101. SHOCK CONTROL OF BRIDGES IN CHINA USING TAYLOR DEVICES’ FLUID VISCOUS DEVICES

Adding damping with various energy dissipating devices has become an accepted method to reduce wind induced vibrations in tall buildings. An example of a 39-story office tower is presented where large projected accelerations generated by the vortex shedding of an adjacent existing 52-story building are reduced by a passive system composed of viscous dampers and a motion amplification system. A description of the damping system and its analytical complexities are discussed. Non-linear analysis of the tower, using time history forcing functions derived from the wind tunnel is presented. Cost data for the damper system is also presented.

Case Study

98. SEISMIC PROTECTION SYSTEM AND ITS ECONOMIC ANALYSIS ON THE BEIJING HIGH-RISE BUILDING PANGU PLAZA

Pangu Plaza, located at Beijing close to 2008 Olympic main stadium, is a 191 meter, 39-story steel high rise building. It was analyzed under earthquake and wind loads with both Fluid Viscous Dampers (FVD) and Buckling Restrained Braces (BRB or UBB) as the seismic protection system. The complete seismic response on the horizontal and vertical directions showed that the Fluid Viscous Dampers are highly effective to reduce the structural response, as well as the secondary system response. A comparative analysis of structural seismic performance and economic effect was considered, by the traditional method of increasing steel columns and beams size; by using BRB’s and by using FVD’s to absorb the seismic energy. Structural response analysis showed that using FVD’s to absorb the seismic energy made the structure satisfy the Chinese seismic design code for the “rare” earthquake and also greatly improved the seismic performance. Economic analysis showed that FVD’s were the most economic approach for both one-time direct investment and long term maintenance.

White Paper

91. COUPLED TRUSS WALLS WITH DAMPED LINK ELEMENTS

A new structural concept is proposed for the seismic design of tall buildings. This system combines the inherent stiffness and strength of a conventional truss system with the energy absorption characteristic of supplemental damping elements. The damping elements are strategically placed to form the linking elements of a coupled vertical truss system. While the force resistance system of the truss wall is in parallel, the damped link beam is in series with the component of the truss stiffness contributed to the coupled wall action. A series of time history dynamic studies gauged the performance of the proposed concept and found the proposed damped link concept superior in performance compared to the conventional approach.

Case Study

80. A LIVING OR SMART BUILDING: THE GUANGZHOU TOWER

This paper presents the evolution of the structural design of one of the tallest structures in the world. The architectural design was developed by Mehrdad Yazdani at Cannon Design Group. The basic architectural vision of the Guangzhou Tower is three twisting interconnected legs. The architectural plan at each level of the tower rotates and twists. The basic structural vision here is of a Living Structure that can be adapted and improved from a structural engineering perspective as new high-tech products become available, as our understanding of the forces of nature improves using ground and aerial instrumentation and as we improve the accuracy of our structural modeling to estimate structural response to wind and earthquake loading.

Investor Information

2022 Q1 Important Links

 

Investor Information

2021 Q4 Important Links

Investor Information

2021 Q3 Important Links

Investor Information

2021 Q2 Important Links

Investor Information

2021 Q1 Important Links

Investor Information

2020 Q4 Important Links

Investor Information

2020 Q3 Important Links

Thank You!

A Taylor Devices Representative will be in touch shortly.

Investor Information

2020 Q1 Important Links

Investor Information

2019 Q4 Important Links