Resources

Technical Papers

49. SEISMIC TESTING OF A BUILDING STRUCTURE WITH A SEMI-ACTIVE FLUID DAMPER CONTROL SYSTEM

This paper describes shaking table tests of a multi-story scale model building structure subjected to seismic excitation and controlled by a semi active fluid damper control system. The semi active dampers were installed in the lateral bracing of the structure and the mechanical properties of the dampers were modified according to control algorithms which utilized the measured response of the structure. A simplified time delay compensation method was developed to account for delays within the control system. The results of shaking table tests are presented and interpreted and analytical predictions are shown to compare reasonably well with the experimental results. These tests included an undamped system, passive damping, and semi-active damping. Both the purely passive damper system and the semi-active system significantly reduced seismic response.

Share This Post

More To Explore

White Paper

12. PASSIVE AND ACTIVE FLUID DAMPERS IN STRUCTURAL APPLICATIONS

Analytical and experimental results demonstrate that the performance improvements from active control systems can also be achieved with passive and semi-active fluid dampers. However, passive or semi-active fluid dampers offer the advantages of low cost, no or minimal demand for external power, longevity and reliability.

Read More »
White Paper

15. REDUCTION OF SHOCK RESPONSE SPECTRA USING VARIOUS TYPES OF SHOCK ISOLATION MOUNTS

This experiment demonstrated how various types of shock absorbers can reduce the overall shock response spectra of a structure subjected to high impact shock. This was accomplished by measuring the acceleration on a weight dropped onto three different shock absorbers from various heights and analyzing the resulting data. A baseline test was performed with a steel hard mount. This was followed by tests with three different soft isolation mounts; a half inch thick neoprene pad, a urethane rubber tube on its side and a hydraulic liquid spring type shock absorber. Results show that both the dominant frequencies and the peak acceleration get lower as the isolation system gets softer. This information can be valuable in the design of isolation systems.

Read More »
Case Study

16. ROCKWELL VISCOUS DAMPER SPECIFICATIONS

This specification covers the set of ten linear fluid viscous dampers along with their mounting brackets and pins for the Rockwell Building located at Jamboree Road and Birch in Newport Beach, California. These dampers provide an output force in either tension of compression that is directly proportional to the relative velocity between the two ends of the dampers. The damper output force varies only with velocity and does not change with damper stroke position or orientation angle. The function of the dampers is to absorb earthquake energy, thereby reducing the amount the building moves when an earthquake occurs.

Read More »

Investor Information

2022 Q1 Important Links

 

Investor Information

2021 Q4 Important Links

Investor Information

2021 Q3 Important Links

Investor Information

2021 Q2 Important Links

Investor Information

2021 Q1 Important Links

Investor Information

2020 Q4 Important Links

Investor Information

2020 Q3 Important Links

Thank You!

A Taylor Devices Representative will be in touch shortly.

Investor Information

2020 Q1 Important Links

Investor Information

2019 Q4 Important Links