Resources

Technical Papers

World leaders in the field of shock & vibration with over 60 years of industry experience. 

21. SEISMIC RESPONSE OF STRUCTURES WITH SUPPLEMENTAL DAMPING

This paper presents a review of supplemental damping devices used for the control of the seismic response of structures. The mechanical properties of these devices are discussed and considerations in the design of energy absorbing systems are presented. Conventional structures passively resist earthquakes through a combination of strength, deformability and energy absorption. They have very little damping, so elastic energy absorption is small. Strong earthquakes deform these structures well beyond their elastic limit through localized plastic hinging, which results in increased flexibility and energy dissipation. Most of the earthquake energy is absorbed by the structure through localized damage of the lateral force resisting system. This is somewhat of a paradox in that the effects of earthquakes (i.e. structural damage) are counteracted by allowing structural damage. Structural performance can be greatly improved if a large portion of the input energy can be absorbed, not by the structure itself, but by some type of supplemental device. This paper describes a number of ways to do this, including friction devices, yielding metal systems, elastomeric viscoelastic dampers and fluid viscous dampers.

Share This Post

Share on facebook
Share on linkedin
Share on twitter
Share on email

More To Explore

Product Info

1. Application of Energy Dissipating

The design of a structure or mechanism subjected to shock and vibration can be greatly improved by the addition of isolation or damping devices. Improvements Include: Reduced Deflection and Stresses, Reduced Weight, Improved Biodynamics, Longer Fatigue Life, Architectural Enhancement and Reduced Cost.

Read More »
White Paper

2. Bridge Design

This paper reports on a non-linear analysis of a bridge supported on sliding bearings with elastomeric restoring spring and viscous dampers. Results were verified with shake table tests.

Read More »
Product Info

3. Commentary on Corrosion

This document shows designers how to avoid corrosion due to the interaction of different metals and alloys at bimetallic contacts. Section one describes the conditions that lead to corrosion at bimetallic contacts and methods to alleviate it. The tables in Section two show the degree of corrosion likely to occur at bimetallic contacts exposed to atmosphere and water.

Read More »

Thank You!

A Taylor Devices Representative will be in touch shortly.