RESOURCES

Seismic Applications

White Paper

63. Virtual Base Isolation by Building Softening with Drift Control Provided by Fluid Viscous Dampers

The paper describes “virtual isolation” for buildings with one or more soft stories. Using the 1999 SEAOC Blue Book (SEAOC, 1999) recommendations for passive energy dissipation, the building’s Lateral Force Resisting System (LFRS) is designed for strength requirements only, resulting in a relatively flexible LFRS, while Fluid Viscous Dampers (FVD) are incorporated to limit story drifts to acceptable levels. There are many benefits to this “virtual isolation” system. With the elimination of the maximum drift requirements, the moment frames are substantially lighter than a traditionally framed building, thus lowering the structural steel cost of the LFRS. The long period structure also produces significantly reduced forces in the foundation elements. Velocity and displacement are reduced significantly through the use of the FVDs, which protects the sensitive contents of the building. These benefits lead to a reduced response resulting in an enhanced performance level during a major seismic event.

Product Info

56. Buildings: Design for Damping

The end of the Cold War in 1990 heralded a restructuring period for the American military and defense industry. In the civil engineering field, high capacity fluid dampers have transitioned from defense related structures to commercial applications on buildings and bridges subjected to seismic and/or wind storm inputs. Because fluid damping technology was proven thoroughly reliable and robust through decades of Cold War usage, implementation on commercial structures has taken place very quickly. This paper provides a broad overview as well as a guide to implementation; with specific case studies for four of the more than 300 major buildings and bridges equipped with fluid dampers by Taylor Devices, Inc., a defense contractor from the Cold War years.

White Paper

55. Experimental Study of Bridge Elastomer and Other Isolation and Energy Dissipation Systems with Emphasis on Uplift Prevention and High Velocity Near-Source Seismic Excitation

A series of shake table tests on an isolated bridge model included low and high damping elastomeric isolation systems, and low damping elastomeric systems with added linear and nonlinear viscous dampers. Each of these configurations could withstand much stronger seismic excitations than the non-isolated configurations. A set of low intensity tests was conducted to form a basis for comparison with the non-isolated configurations and also to test the effectiveness of these systems under low intensity excitation. The results of these tests are presented, followed by a discussion of the effects of scragging, the benefits of seismic isolation, and the significance of damping, the importance of added damping in near source seismic excitation and on the benefits and drawbacks of using nonlinear viscous damping.

Product Info

54. Here’s How it Works

This article from Bridge Builder magazine shows how Taylor Devices dampers reduce seismic response of bridges.

White Paper

53. SEAOC Energy Dissipation Committee Appendix A: Guidelines for Buildings Using Passive Energy Dissipation Systems

This set of provisions provides minimum design requirements for the incorporation of passive energy dissipation devices in buildings. Energy dissipation devices (also termed damping devices) reduce global and interstory seismic displacement response of structural systems, but may either increase or decrease seismic stresses and accelerations within structural systems. They provide a controlled increase in structural damping, and may also result in an increase in structural stiffness or change in participating mass. Passive energy dissipation systems do not require active control by electrical, pneumatic or hydraulic systems. Buildings designed in conformance with these provisions must also be designed in accordance with all other applicable provisions of the Uniform Building Code, except as specifically defined in this appendix. Design must consider the combined behavior of all elements of both the Lateral Force Resisting System (LFRS) and the Energy Dissipation System (EDS). Energy dissipation devices must not form part of the gravity load – resisting system.

Technical Brief

50. Testing and Modeling of an Improved Damper Configuration for Stiff Structural Systems

This report describes a toggle brace damper system that adds significant damping to stiff structures, like reinforced concrete shear wall buildings. It is generally recognized that these stiff structural systems, such as reinforced concrete shear walls and steel braced dual systems, are characterized by small drifts and small relative velocities that make the implementation of seismic energy dissipation devices difficult. This report presents a study on a toggle brace damper system that magnifies the damper displacement and reduces the required damper force to produce the desired damping. The reports presents the concept, describes the theoretical treatment, and includes an experimental study with cyclic and shake table testing of a model structure along with procedures for response history and simplified analysis.

Technical Brief

49. Seismic Testing of a Building Structure with a Semi-Active Fluid Damper Control System

This paper describes shaking table tests of a multi-story scale model building structure subjected to seismic excitation and controlled by a semi active fluid damper control system. The semi active dampers were installed in the lateral bracing of the structure and the mechanical properties of the dampers were modified according to control algorithms which utilized the measured response of the structure. A simplified time delay compensation method was developed to account for delays within the control system. The results of shaking table tests are presented and interpreted and analytical predictions are shown to compare reasonably well with the experimental results. These tests included an undamped system, passive damping, and semi-active damping. Both the purely passive damper system and the semi-active system significantly reduced seismic response.

Case Study

48. Arrowhead Regional Medical Center

This article describes every aspect of the design and construction of the Arrowhead Regional Medical Center, including the use of base isolators and viscous dampers to insure continuous operation even after a major seismic event. The article even includes many of the financial aspects of this huge project.

Case Study

46. Design of Steel Pyramid Using Fluid Viscous Dampers with Moment Frame

The Eleven story 450,000 ft2 pyramid shaped office building described in this article was one of the first new buildings in the United States to use Seismic Dampers. This National Headquarters for a financial institution is located in West Sacramento, CA. The basic lateral force resisting system of the building consists of steel moment frames. In addition, approximately 15% of critical damping was provided using Fluid Viscous Dampers (FVD) in order to reduce displacement and acceleration. The steel moment frames were designed to remain well below the yield strength, and the story drift ratio was limited to 0.005 to protect the welded moment connections for the Design Basis Earthquake (DBE). Earthquake performance, cost effectiveness, and architectural requirements were the primary concerns in designing this building.

White Paper

45. Electrorheological Damper with Annular Ducts for Seismic Protection Applications

This paper presents the design, analysis, testing and modeling of an electrorheological (ER) fluid damper developed for vibration and seismic protection of civil structures. The damper consists of a main cylinder and a piston rod that pushes an ER fluid through a stationary annular duct. The basic equations that describe the fluid flow across an annular duct are derived. Experimental results on the damper response with and without the presence of electric field are presented. A combination of a simple phenomenological model and a neural network is proposed as a practical tool to approximate the nonlinear and velocity dependent damper response.

Thank You!

A Taylor Devices Representative will be in touch shortly.