Technical Papers

World leaders in the field of shock & vibration with over 60 years of industry experience. 


Fluid Viscous Devices have been found to be a highly effective protection system for bridges. Introduced to China in 1999, the Taylor Devices damper systems have been successfully installed or will be installed in both large and super large bridges in China for protection from earthquake, wind, vehicle and other vibration. Seventeen different bridge projects include the Sutong Yangtze River Bridge, the longest cable stayed bridge in the world, the Nanjing 3rd Yangtze River Bridge, the fifth longest suspension bridge in the world, and the Xihoumen across Sea Bridge, the second longest suspension bridge in the world. The performance of the bridges and dampers have been reported as "very good" during the May 12, 2008 Wenchuan earthquake. All of the dampers produced have been subjected to rigorous static and dynamic testing, which show the dampers will perform well for the next 50 years and possibly much longer.

Share This Post

Share on facebook
Share on linkedin
Share on twitter
Share on email

More To Explore

Product Info

1. Application of Energy Dissipating

The design of a structure or mechanism subjected to shock and vibration can be greatly improved by the addition of isolation or damping devices. Improvements Include: Reduced Deflection and Stresses, Reduced Weight, Improved Biodynamics, Longer Fatigue Life, Architectural Enhancement and Reduced Cost.

Read More »
White Paper

2. Bridge Design

This paper reports on a non-linear analysis of a bridge supported on sliding bearings with elastomeric restoring spring and viscous dampers. Results were verified with shake table tests.

Read More »
Product Info

3. Commentary on Corrosion

This document shows designers how to avoid corrosion due to the interaction of different metals and alloys at bimetallic contacts. Section one describes the conditions that lead to corrosion at bimetallic contacts and methods to alleviate it. The tables in Section two show the degree of corrosion likely to occur at bimetallic contacts exposed to atmosphere and water.

Read More »

Thank You!

A Taylor Devices Representative will be in touch shortly.