Resources

Technical Papers

96. Roof Isolation System to Reduce Seismic Response of Buildings

A roof isolation system is proposed as a means to reduce the detrimental effect of earthquakes in buildings. This roof isolation system entails the insertion of flexible laminated rubber bearings between a building's roof and the columns that support it and the addition of viscous dampers connected between the roof and the rest of the building. The properties and dimensions of the rubber bearings and viscous dampers are selected in a way that makes the roof, bearings, and dampers form a highly damped vibration absorber. Presented also is a comparative study with a simple five story steel building under a strong earthquake ground motion that is carried out to assess the effectiveness of the proposed system. In this comparative study, it is found that the roof isolation scheme reduces the floor displacements and interstory drifts of the analyzed building by as much as 83 percent. On the basis of these results and in view of its simplicity, it is concluded that the proposed roof isolation system has the potential to become a practical and effective way to reduce earthquake damage in buildings.

Share This Post

More To Explore

White Paper

30. Experimental and Analytical Study of a System Consisting of Sliding Bearings and Fluid Restoring Force/Damping Devices

This report describes an experimental study of the behavior of a bridge seismic sliding isolation system consisting of flat sliding bearings and fluid restoring force/damping devices. Earthquake simulator tests were performed on a model bridge structure both with isolators and without. The experimental results demonstrate a marked increase of the capacity of the isolated bridge to withstand earthquake forces. Analytical techniques are used to predict the dynamic response of the system and the obtained results are in very good agreement with the experimental results.

Read More »
White Paper

31. Study of Seismic Isolation Systems for Computer Floors

This report describes the development and testing of a computer floor seismic isolation systems which uses existing devices developed for the seismic isolation of buildings and shock isolation of military equipment. A computer floor system with raised floor and a generic slender equipment cabinet was constructed. It was isolated by spherically shaped sliding bearings and was highly damped either by utilizing high friction in the bearings or by installing fluid viscous dampers. The spherically shaped bearings provided the simplest means of achieving long period in the isolation system under low gravity load. The isolation system prevented rocking of the cabinet on top of the isolated floor and substantially reduced its acceleration response in comparison to that of a conventional computer floor. An analytical study was also conducted in order to extend the results to a range of parameters which could not be tested.

Read More »
White Paper

32. Application of Fluid Viscous Dampers to Earthquake Design

This article summarizes the extensive viscous dampers investigation performed by NCEER at State University of New York, Buffalo Campus. This included computer modeling of both the dampers and complete isolated systems, along with shake table testing and correlation of results. The article also describes a very large damper projects; dampers + base isolation for a set of five hospital buildings near San Bernardino, CA.

Read More »
White Paper

34. Fear of Trembling

This article describes the effects of both Kobe earthquake and the Northridge earthquake in detail, including technical and economic details. It also discusses building codes and practices and what is being done around the world to decrease the risk of severe seismic damage.

Read More »

Thank You!

A Taylor Devices Representative will be in touch shortly.