Search
Close this search box.
Resources

Technical Papers

46. DESIGN OF STEEL PYRAMID USING FLUID VISCOUS DAMPERS WITH MOMENT FRAMES

The Eleven story 450,000 ft2 pyramid shaped office building described in this article was one of the first new buildings in the United States to use Seismic Dampers. This National Headquarters for a financial institution is located in West Sacramento, CA. The basic lateral force resisting system of the building consists of steel moment frames. In addition, approximately 15% of critical damping was provided using Fluid Viscous Dampers (FVD) in order to reduce displacement and acceleration. The steel moment frames were designed to remain well below the yield strength, and the story drift ratio was limited to 0.005 to protect the welded moment connections for the Design Basis Earthquake (DBE). Earthquake performance, cost effectiveness, and architectural requirements were the primary concerns in designing this building.

Share This Post

More To Explore

White Paper

30. EXPERIMENTAL AND ANALYTICAL STUDY OF A SYSTEM CONSISTING OF SLIDING BEARINGS AND FLUID RESTORING FORCE/DAMPING DEVICES

This report describes an experimental study of the behavior of a bridge seismic sliding isolation system consisting of flat sliding bearings and fluid restoring force/damping devices. Earthquake simulator tests were performed on a model bridge structure both with isolators and without. The experimental results demonstrate a marked increase of the capacity of the isolated bridge to withstand earthquake forces. Analytical techniques are used to predict the dynamic response of the system and the obtained results are in very good agreement with the experimental results.

Read More »
White Paper

31. STUDY OF SEISMIC ISOLATION SYSTEMS FOR COMPUTER FLOORS

This report describes the development and testing of a computer floor seismic isolation systems which uses existing devices developed for the seismic isolation of buildings and shock isolation of military equipment. A computer floor system with raised floor and a generic slender equipment cabinet was constructed. It was isolated by spherically shaped sliding bearings and was highly damped either by utilizing high friction in the bearings or by installing fluid viscous dampers. The spherically shaped bearings provided the simplest means of achieving long period in the isolation system under low gravity load. The isolation system prevented rocking of the cabinet on top of the isolated floor and substantially reduced its acceleration response in comparison to that of a conventional computer floor. An analytical study was also conducted in order to extend the results to a range of parameters which could not be tested.

Read More »
White Paper

32. Application of Fluid Viscous Dampers to Earthquake Design

This article summarizes the extensive viscous dampers investigation performed by NCEER at State University of New York, Buffalo Campus. This included computer modeling of both the dampers and complete isolated systems, along with shake table testing and correlation of results. The article also describes a very large damper projects; dampers + base isolation for a set of five hospital buildings near San Bernardino, CA.

Read More »
White Paper

34. Fear of Trembling

This article describes the effects of both Kobe earthquake and the Northridge earthquake in detail, including technical and economic details. It also discusses building codes and practices and what is being done around the world to decrease the risk of severe seismic damage.

Read More »

Investor Information

2022 Q1 Important Links

 

Investor Information

2021 Q4 Important Links

Investor Information

2021 Q3 Important Links

Investor Information

2021 Q2 Important Links

Investor Information

2021 Q1 Important Links

Investor Information

2020 Q4 Important Links

Investor Information

2020 Q3 Important Links

Thank You!

A Taylor Devices Representative will be in touch shortly.

Investor Information

2020 Q1 Important Links

Investor Information

2019 Q4 Important Links