Search
Close this search box.
Resources

Technical Papers

50. TESTING AND MODELING OF AN IMPROVED DAMPER CONFIGURATION FOR STIFF STRUCTURAL SYSTEMS

This report describes a toggle brace damper system that adds significant damping to stiff structures, like reinforced concrete shear wall buildings. It is generally recognized that these stiff structural systems, such as reinforced concrete shear walls and steel braced dual systems, are characterized by small drifts and small relative velocities that make the implementation of seismic energy dissipation devices difficult. This report presents a study on a toggle brace damper system that magnifies the damper displacement and reduces the required damper force to produce the desired damping. The reports presents the concept, describes the theoretical treatment, and includes an experimental study with cyclic and shake table testing of a model structure along with procedures for response history and simplified analysis.

Share This Post

More To Explore

Case Study

17. SAN BERNARDINO COUNTY MEDICAL CENTER REPLACEMENT PROJECT TECHNICAL SPECIFICATIONS

This specification covers the set of 186 fluid viscous dampers used on the five buildings of the new San Bernardino County Medical Center located in Colton, California. Three major faults are close to this location. The dampers operate in parallel with elastomeric base isolators, and reduce the required isolator stroke from +/- 48 inches to +/- 22 inches. This specification is very detailed and includes testing requirements.

Read More »
White Paper

18. SEISMIC CONTROL OF STRUCTURES WITH DAMPED RESONANT APPENDAGES

This paper shows how Tuned Mass Dampers can provide seismic protection for structures. These dampers consist of a relatively small mass, a spring, and a dashpot attached to a point of maximum vibration and in resonance with the structure to which they are attached. They are widely used to control the response of buildings, bridges, towers, chimneys and other structures to wind forces, machine vibrations and occupant activity. For the most part however, these dampers have been considered ineffective to reduce the seismic response of structures. This paper demonstrates that such devices can be used effectively to control the seismic response of structures. The paper presents a basic mechanism that explains under what conditions such dampers may work effectively under earthquake loads. It also provides recommendations for the selection of the mass, stiffness and damping factors. It includes the results of a series of numerical and experimental tests which verify that properly designed Tuned Mass Dampers effectively and consistently reduce the response of many types of structural systems to various types of earthquake excitations.

Read More »
Case Study

19. SEISMIC DAMAGE CONTROL WITH PASSIVE ENERGY DEVICES: A CASE STUDY

This paper presents a theoretical case study of the effectiveness of supplemental passive damping to reduce structural response to seismic excitation. A six story special moment resistant reinforced concrete frame is studied with and without the aid of supplemental dampers. Response predictions are presented for each case. Fluid dampers proved to be a very cost effective way to significantly reduce the seismic response of the building investigated. Preliminary cost estimates indicate that positive damage control can be economically achieved.

Read More »
White Paper

20. SEISMIC ISOLATION OF BRIDGES

This unpublished paper by Dr. Michael Constaninou describes the seismic protection of a steel multi-girder highway bridge. Three types of base isolators are included; high damping rubber, lead-rubber and Friction Pendulum. The effect of added viscous damping is also investigated, and is found to greatly enhance the performance of the isolators, even though the dampers required are rather small. This classic paper is hand written by Dr. Constantinou and includes his calculations and his sketches of the bridge, isolation devices and dampers.

Read More »

Investor Information

2022 Q1 Important Links

 

Investor Information

2021 Q4 Important Links

Investor Information

2021 Q3 Important Links

Investor Information

2021 Q2 Important Links

Investor Information

2021 Q1 Important Links

Investor Information

2020 Q4 Important Links

Investor Information

2020 Q3 Important Links

Thank You!

A Taylor Devices Representative will be in touch shortly.

Investor Information

2020 Q1 Important Links

Investor Information

2019 Q4 Important Links