Search
Close this search box.
Resources

Technical Papers

61. A NUMERICAL INVESTIGATION OF COMBINED SHOCK AND VIBRATION ISOLATION THROUGH THE SEMI-ACTIVE CONTROL OF MAGNETORHEOLOGICAL FLUID DAMPER IN PARALLEL WITH AN AIR SPRING

Combining shock and vibration isolation into a single isolation mount is investigated numerically through the use of the Bouc-Wen model of a magnetorheological fluid damper in parallel with an air spring. The stability and dissipative capabilities of the Bouc-Wen model are proven mathematically. The response characteristic of this hybrid isolator to shock and vibration inputs is explored. The advantages of combining shock and vibration isolation into a single package is discussed. It is possible, using this technique, for a single device to perform equally well as a shock and a vibration isolator.

Share This Post

More To Explore

White Paper

2. Bridge Design

This paper reports on a non-linear analysis of a bridge supported on sliding bearings with elastomeric restoring spring and viscous dampers. Results were verified with shake table tests.

Read More »
Case Study

10. INVESTIGATION OF LIGHT POLE BASE INTEGRITY – RICH STADIUM

Light poles at Rich Stadium in Orchard Park, N.Y., were showing incipient failure of their hold-down bolts, due to wind excitation. This paper describes the measures used to alleviate this problem, including the addition of viscous dampers between the stadium structure and a point around one third up on the light poles.

Read More »

Investor Information

2022 Q1 Important Links

 

Investor Information

2021 Q4 Important Links

Investor Information

2021 Q3 Important Links

Investor Information

2021 Q2 Important Links

Investor Information

2021 Q1 Important Links

Investor Information

2020 Q4 Important Links

Investor Information

2020 Q3 Important Links

Thank You!

A Taylor Devices Representative will be in touch shortly.

Investor Information

2020 Q1 Important Links

Investor Information

2019 Q4 Important Links